SPRINGFIELD LAKES
DESIGN MANUAL
CONTENTS

1.0 INTRODUCTION
2.0 VISION STATEMENT
3.0 DEVELOPMENT PRINCIPLES
4.0 DESIGN SOLUTIONS
 4.1 ROADS
 4.2 PUBLIC REALM
 4.3 LOT LAYOUT & HOUSING DENSITY
 4.4 DRAINAGE AND WATER SENSITIVE URBAN DESIGN
 4.5 BUILT FORM
 4.6 SOCIAL INFRASTRUCTURE (FUTURE EDITION)
 4.7 PLACE MAKING (FUTURE EDITION)
 4.8 INFRASTRUCTURE (FUTURE EDITION)
 4.9 PARKING (FUTURE EDITION)
 4.10 ONGOING MANAGEMENT (FUTURE EDITION)
5.0 SOLUTION MATRIX
INTRODUCTION

Date of Council Resolution
These guidelines were adopted by council on 21 February 2007, and take effect on 21 February 2007, in accordance with section 2.3(2) of the Planning Scheme. The guidelines were amended by Council on 31 January 2017 and took effect on 13 February 2017.

Background and Applicability
This manual was developed collaboratively by Delfin Lend Lease and Ipswich City Council.

The manual was developed specifically for the use within Springfield Lakes, however it may also be used, where circumstances warrant, throughout the balance of the Springfield estate.

The purpose of the manual is to:
- outline a shared vision for Springfield Lakes,
- set out principles to achieve the vision, and that all development proposals and decisions must respect,
- establish a palate of solutions – relating to urban, landscape and engineering design – that enable the vision and principles to be implemented,
- consist of design solutions that are appropriate to Springfield Lakes, its geography and context, and which set benchmarks for development standards in Ipswich,
- evolve over time, addressing the physical and social challenges of the day, and continue to be a useful resource for future developers and Ipswich City Council teams.
Council’s Implementation Guidelines are intended to apply a standard approach to the interpretation and implementation of the relevant aspects of the Planning Scheme. They offer a degree of certainty and formality to applicants, Council and the community. Where an applicant is proposing a variation to the guidelines the onus is on the applicant to demonstrate the facts and circumstances to support the variation.

Discretion to be applied

Notwithstanding the actual provisions contained in the guidelines, care must be exercised in their application in order to consider -

- the specific impacts on individual cases, including adjoining lands; and
- whether non compliance, by a marginal amount, with a specific numerical standard would affect the overall intent of the guidelines.
2.0 VISION STATEMENT

Springfield Lakes is a modern suburb of distinct residential villages and leafy streets nestled amongst a greenspace network of parks and lakes. Springfield Lakes makes the most of its topography and green setting to exploit views and celebrate slope-responsive housing.

A choice of housing types, from traditional detached homes to contemporary attached housing, ensures a diverse demographic mix and allows the project to respond to a changing market.

Springfield Lakes is easy and safe to get around, whether by walking, cycling, driving or on public transport. A lively and memorable public realm active with people walking, neighbours talking and children playing demonstrates the high levels of community interaction.

Springfield Lakes demonstrates best practice in design and sets a new benchmark for the region.
DEVELOPMENT PRINCIPLES

These ten principles elaborate on the Vision Statement. All development proposals and decisions should be checked against these principles.

The design solutions for urban, landscape and engineering design that make up the body of this manual have been developed with these development principles in mind.

At the end of this manual a matrix of development principles and design solutions is used to illustrate this relationship.

A SAFE PLACE
Plan for safety in walking, playing, cycling and driving. Use Crime Prevention Through Environmental Design (CPTED) and other techniques to enhance community safety. Practice safe tree retention and safe planting and reduce risks from natural hazards.

AN INTEGRATED PLACE
Integrate planning, urban design, landscape and engineering goals in decision making and implementation. Integrate the place with community needs, so that residents can live, work and play in their street, village and suburb. The Springfield estate contains an integrated network of urban villages which belong within the context of Ipswich, SEQ and Queensland.

AN ACTIVE PUBLIC REALM
Create people friendly streets, parks and village centres where neighbours talk, kids play and cycle or walk to school. Promote a healthy and diverse community by providing recreational opportunities. Provide a diverse range of active and passive recreation opportunities.

A GREEN PLACE
Continue to create the greener open spaces and vegetated backdrops that are valued at Springfield Lakes. Embellish parks and streets—retaining existing trees where possible—to form attractive leafy neighbourhoods. Reduce the environmental impact of development by careful planning and design, water cycle management, and by innovating. Encourage energy efficiency in the design and operation of buildings and public and private infrastructure.

A UNIQUE PLACE
Build a series of unique and special places of recognisable character. Be unique at the scale of streets, clearly defined villages, neighbourhood centres and as Springfield Lakes as a whole. Use the attributes of views, topography, water and design treatments to achieve this goal.

A SAFE PLACE
Plan for safety in walking, playing, cycling and driving. Use Crime Prevention Through Environmental Design (CPTED) and other techniques to enhance community safety. Practice safe tree retention and safe planting and reduce risks from natural hazards.
A RESPONSIVE PLACE
Use slope responsive solutions in road, lot, building and park design.
Respect ridges, hillsides, gullies, vistas and climate.
Respond to the market with a choice of housing and through innovation.

A PLACE OF CHOICES AND FLEXIBILITY
Be willing to experiment and learn.
Provide for non-residential uses such as shops, offices, education and other attractions.
Offer a wide range of housing products to appeal to multiple demographics.
Create a complete community with opportunities to live, work and play.

A PLACE OF MOBILITY AND CONNECTIVITY
Build direct and legible routes for pedestrians, cyclists, cars and public transport.
Reduce the divisive nature of major traffic routes to improve walkability.
Make Springfield Lakes an accessible place however we choose to travel.

A PLACE OF PARTNERSHIPS
Achieve results by building rapport and trust between Ipswich City Council, developers and the community.
Use open discussion to leverage from the experience and knowledge inbuilt in our teams.

A PLACE OF COMMUNITY
Establish a community with a high degree of social capital and social prosperity.
These design solutions for urban, landscape and engineering design provide the method of implementing the vision statement.

All design solutions have been tested against the development principles of the previous chapter. As individual solutions may not address all ten principles, the focus of each solution is highlighted on the right hand side of the page.

These design solutions supplement the existing Ipswich City Council standards as contained in the Ipswich Planning Scheme and its standard drawings. Where there is a discrepancy between the existing standards and these design solutions, the design solutions outlined in this manual shall prevail. The design solutions outlined in this manual however do not supersede the requirements outlined in the Springfield Infrastructure Agreement or any local area plan approved under the Springfield Structure Plan.

Notes accompanying each solution are used to explain the design criteria and to indicate when each solution should be used.

Dimensions stated are desirable minimum dimensions. In some cases an absolute minimum is also given in the notes.

Notwithstanding these standard solutions, alternative solutions and dimensions may be used in special circumstances when agreed by Ipswich City Council and the developer.

Particular attention is drawn to those solutions that aim to assist the retention of existing vegetation. These solutions include: 4.1.1, 4.1.4, 4.1.5, 4.1.10, 4.1.17, 4.1.19, 4.1.24 (islands), 4.2.1.1, 4.2.1.2, 4.2.1.3, 4.2.1.12, 4.2.2.2 and 4.5.1.
4.1 ROADS

4.1.1 Road Hierarchy Plan
A diagrammatic illustration of the road and street types proposed for use at Springfield Lakes

Road / Street Types:
A Neighbourhood Commercial Street (Dual Carriageway)
B Neighbourhood Commercial Street
C No-Access Trunk Collector Street With Bicycle Lanes (Dual Carriageway)
D No-Access Trunk Collector Street With Bicycle Lanes
E Access Trunk Collector Street (Dual Carriageway)
F Access Trunk Collector Street
G Collector Street
H Access Street / Access Place
I 3-Lane Access Street
J Split Access Street
K Parkfront Access Street
L Lane
M Parkfront Lane
N Rear Lane
O Single-sided Lane

Intersection Types:
P 4-way Roundabout
Q 3-way Roundabout
R 3-way T-intersection
S 4-way Mini Roundabout
T Signed 4-way Intersection

Cul-de-sac Turning Areas:
U T-head
V Offset Square
W Y-head
X Island
Y R9 Turning Circle

A Place of Mobility & Connectivity
4.1.1 Neighbourhood Commercial Street (Dual Carriageway)

NOTES:
1. Appropriate for neighbourhood centres, local shops and commercial streets.
2. Intended to provide convenient access to premises and a safe, comfortable environment for pedestrians and cyclists.
3. Footpath or verge width may vary from 4.5-5.5m depending on intensity of commercial activity (e.g. outdoor dining). > 5.5m may be required to protect significant native vegetation or where topography requires baffles.
4. Where a commercial street is intended to become a 'Main Street' a total design package is to be negotiated with Council, inclusive of:
 - roadworks (e.g. travel lanes and parking areas);
 - landscaped treatments, paving and street furniture;
 - vehicle parking and loading areas;
 - public transport (e.g. bus stop); and
 - building location and design.
5. Absolute minimum median width 2m. Desirable 4m. > 4m may be required to protect significant native vegetation or where topography requires baffles.
6. Posted speed 50 km/h.
7. Bicycle lanes to be linemarked when linking to similar lanes at each end of neighborhood commercial street.

A Safe Place
An Active Public Realm
A Place of Mobility & Connectivity
4.1.2 Neighbourhood Commercial Street

NOTES:

1. Appropriate for neighbourhood centres, local shops and commercial streets.

2. Intended to provide convenient access to premises and a safe, comfortable environment for pedestrians and cyclists.

3. Footpath or verge width may vary from 4.5-5.5m depending on intensity of commercial activity (e.g. outdoor dining). > 5.5m may be required to protect significant native vegetation or where topography requires batter.

4. Where a commercial street is intended to become a ‘Main Street’ a total design package is to be negotiated with Council, inclusive of:
 - roadworks (e.g. travel lanes and parking areas);
 - landscaped treatments, paving and street furniture;
 - vehicle parking and loading areas;
 - public transport (e.g. bus stop); and
 - building location and design.

5. Absolute minimum verge width 4m.

6. Posted speed 50 km/h.

7. Additional lane width may be desirable for bicycle lanes if linking to similar lanes at each end of neighborhood commercial street.
4.1.3
No -Access Trunk Collector Street with Bicycle Lanes (Dual Carriageway)

NOTES:
1. Alternative to standard Trunk Collector Street - using same pavement width - but with line-marked bicycle lanes in both directions.
2. Preferred form is Access Trunk Collector Street.
3. Design Speed 60 km/h. Posted speed 60km/h. Safe Intersection Sight Distance based on 60 km/h must be achieved at all intersections.
4. No residential driveways, access or frontage.
5. Driveway access to shopping centres, office complexes and integrated residential developments may be acceptable.
6. Absolute minimum verge width 4m, > 4.5m may be required to protect significant native vegetation or where topography requires batters.
7. Absolute minimum median width 2m. Desirable 4m, >6m may be required to protect significant native vegetation.
8. Minimum planting zone between footpath and property boundary of 1.5m, to be densely planted.
9. Indented bus bays to be provided at a maximum of 800m intervals (desirable 400m) on both sides of street.
10. Central median turnaround facility to be provided at approximately 300m intervals.
11. Ramp between bicycle lanes and footpath, such as those detailed in Austroads part 14, are required only at intersections with sub-arterial or arterial roads, or at the termination of bicycle lanes.
4.1.4
No-Access Trunk Collector Street with Bicycle Lanes

NOTES:
1. Alternative to standard Trunk Collector Street - using same pavement width but with line-marked bicycle lanes in both directions.
2. Preferred form is Access Trunk Collector Street.
3. Design Speed 60 km/h, Posted speed 60km/h. Safe Intersection Sight Distance based on 60 km/h must be achieved at all intersections.
4. No residential driveways, access or frontage.
5. Driveway access to shopping centres, office complexes and integrated residential developments may be acceptable.
6. Absolute minimum verge width 4m, > 4.5m may be required to protect significant native vegetation or where topography requires batters.
7. Minimum planting zone between footpath and property boundary of 1.5m, to be densely planted.
8. Indented bus bays to be provided at a maximum of 800m intervals (desirable 400m) on both sides of street.
9. Ramp between bicycle lanes and footpath, such as those detailed in Austroads part 14, are required only at intersections with sub-arterial or arterial roads, or at the termination of bicycle lanes.
4.1.5
Access Trunk Collector Street (Dual Carriageway)

NOTES:
1. Appropriate for Trunk Collector Streets where residential frontage is desired to activate the street.
2. No residential driveways > 8000vpd. Residential frontage may still be achieved using rear-loaded dwellings. Limited driveway access to integrated residential developments may be acceptable.
3. Design Speed 60 km/h. Posted speed 60km/h. Safe Intersection Sight Distance based on 60 km/h must be achieved at all intersections.
4. Number and location of driveways controlled by one or more of the following methods:
 - access from rear lane or street;
 - access from side street or battleaxe;
 - angled driveways;
 - minimum driveway spacing;
 - minimum off street parking requirement;
 - minimum lot width or lot size; and
 - shared driveways.
5. Absolute minimum verge width 4m. > 4.5m may be required to protect significant native vegetation or where topography requires batters.
6. Absolute minimum median width 2m. Desirable 4m. >6m may be required to protect significant native vegetation.
7. Bus stops to be provided at a maximum of 800m intervals (desirable 400m) on both sides of street. Bus stops to be located within 2.5m parking / cycle lanes.
8. Central median turnaround facility to be provided at approximately 300m intervals.
4.1.6 Access Trunk Collector Street

NOTES:
1. Appropriate for Trunk Collector Streets where residential frontage is desired to activate the street.
2. No residential driveways > 7500vpd. Residential frontage may still be achieved using rear-loaded dwellings. Limited driveway access to integrated residential developments may be acceptable.
3. Design Speed 60 km/h. Posted speed 60km/h. Safe Intersection Sight Distance based on 60 km/h must be achieved at all intersections.
4. Number and location of driveways controlled by one or more of the following methods:
 • access from rear lane or street;
 • access from side street or battleaxe;
 • angled driveways;
 • minimum driveway spacing;
 • minimum off street parking requirement;
 • minimum lot width or lot size; and
 • shared driveways.
5. Absolute minimum verge width 4m. > 4.5m may be required to protect significant native vegetation or where topography requires batters.
6. Bus stops to be provided at a maximum of 800m intervals (desirable 400m) on both sides of street. Bus stops to be located within 2.5m parking / cycle lanes.
4.1.7
Collector Street

NOTES:
1. Cross-section as per ICC Standard Drawings.
2. Absolute minimum verge width 3.5m for short lengths only.
3. Design speed 40 km/h, Legal speed limit 50 km/h (unposted). Safe Intersection Sight Distance based on 40 km/h must be achieved at all intersections.
4.1.8
Access Street / Access Place

NOTES:
1. Cross-section as per ICC Standard Drawings.
2. Absolute minimum verge width 3.0m for short lengths only.
3. Design speed 30 km/h. Legal speed limit 50 km/h (unposted). Safe Intersection Sight Distance based on 30 km/h must be achieved at all intersections.
3-Lane Access Street

NOTES:

1. Three lane (unmarked) carriageway allowing one parking and two moving lanes.
2. Appropriate for streets with narrow lot frontages.
3. Design speed 30 km/h. Legal speed limit 50 km/h (unposted). Safe intersection sight distance based on 30 km/h must be achieved at all intersections.
4. Alternative to two-lane carriageway with constructed parking bays.
5. On-street parking capacity ensured by lot layout and nominating driveway locations on setback plan.
6. Desirable maximum length 200m.
7. Absolute minimum 3m verge for short lengths only. Desirable 3.5-4.5m.
4.1.10 Split Access Street

NOTES:
1. Allows access along contours on steeply sloping land, with reduced earthworks and improved lot access.
2. Provides a landscape feature within streetscape.
3. Guard rail (if >900mm fall) to top of retaining/batter.
4. Min 1:1 level change.
5. Retaining > 900mm in height requires structural certification. For walls > 900mm gravity walls are generally not preferred. Detailed design and separate approval required.
6. Maximum length of road between U-turn facilities:
 - 150m for access streets; and
 - 300m for collector streets.
7. Absolute minimum 3m verge for short lengths only. Desirable 3.5-4.5m.
8. Absolute minimum median width 2m. Desirable 4m. > 6m may be required to protect significant native vegetation.
9. Single lane (3.5m) where no frontage. Two lane (5.5m) where there is residential frontage to allow for on street parking.
10. Where practical, important pedestrian connections between upper and lower carriageways should be provided using steps or stairs.
4.1.11 Parkfront Access Street

NOTES:
1. Provides activity, surveillance and casual parking to park frontages.
2. Drains to park via flush or slotted kerb where practical.
3. Alternatively footpath may be located on park boundary if pedestrian connectivity is improved.
4. Absolute minimum verge 4m on property side.
4.1.12
Lane

NOTES:
1. 100 vehicles per day.
2. Max length of 80m or 5 driveways.
3. Shared Zone, no footpath.
4. Max Design Speed 20km/h for pedestrian & cyclist safety.
5. Preferred central V-drain. One-way crossoff with kerb and channel an alternative. Roofwater connections where necessary.
6. Creates amenity, pedestrian connectivity, and opportunity for social use of street.
8. Design should maximise habitable rooms overlooking lane for casual surveillance.
4.1.13
Parkfront Lane

NOTES:
1. 100 vehicles per day.
2. Desirable max length of 100m between exit points.
3. Shared Zone, no footpath.
4. Max Design Speed 20km/h for pedestrian & cyclist safety.
5. Drains to park; flush or slotted kerb where practical.
6. Creates amenity, pedestrian connectivity, and opportunity for social use of street.
8. Design should maximise habitable rooms overlooking lane for casual surveillance.
9. Not to be used as primary (i.e. min 50%) frontage to any recreation parks or sports grounds.

An Active Public Realm
A Safe Place
4.1.14 Rear Lane

NOTES:
1. Garage access for rear - loaded housing.
2. 100 vehicles per day.
3. Desirable max length of 100m between exit points.
4. Shared Zone, no footpath.
5. Max Design Speed 20km/h.
6. Design should maximise habitable rooms overlooking lane for casual surveillance both within the rear lane itself and at ends of lane. Habitable rooms over garages within lane are encouraged to increase casual surveillance.
9. Preference for rear lane to be elevated slightly above street network.
10. Design must ensure ability to enter garage.
11. Rear lane to be lit.
12. Additional reserve width is desirable at intervals and at entry points to allow for landscaping. Alternatively, landscaping may be provided within properties to soften built form of lane.
4.1.15
Single-sided Lane

NOTES:
1. Access to low-side only on steeply sloping land.
2. Single moving lane with passing places.
3. Preferred max length of 150m.
4. Retaining > 900mm in height requires structural certification. For walls > 900mm gravity walls are generally not preferred. Detailed design and separate approval required.
4.1.16
One-way Crossfall Street

NOTES:
1. Used to reduce slope impact to lots and enable tree retention.
2. Creates shady, attractive streets for pedestrians and residents.
3. Suitable for access, collector and trunk collector streets (footpaths on both sides to be provided for collector and trunk collector streets).
4. Typical verge widths shown.
5. Low side crossfall option not generally preferred but can occur to protect significant native vegetation if verge profile can be guaranteed to prevent stormwater inundation by, for example, locating a footpath on the low side.
4.1.17 Alternative Verge Profiles

NOTES:
1. Used to reduce slope impact to lots and enable tree retention.
2. Retaining > 900mm height requires structural certification. For walls > 900mm gravity walls not preferred. Detailed design and separate approval required.
4. Absolute maximum grade 1:2.
5. Maximum 1:6 where driveway access required.
6. Verges > 1:6 require landscaping other than turf.
7. Decision to use alternative verge profile to retain existing trees may be made on site by the developer and Ipswich City Council officers. Works to be surveyed and included in “as constructed” package.
4.1.18
Median Strip
Speed Control Device

NOTES:
1. Preferred carriageway narrowing speed control device for access and collector streets <1500 vpd.
2. Min. median width 2m. >2m may be required to protect significant native vegetation.
3. Median landscaped for amenity, visibility and effectiveness.
4. Breaks in median to facilitate driveway access.
5. Lots allowing double garage preferred adjacent to speed control device to maximise off-street parking opportunities.
NOTES:
1. Single moving lane speed control device for access streets <400 vpd.
2. Landscaped for amenity, visibility and effectiveness.
3. Opportunity to coincide with tree retention.
4. Contrasting pavement treatment may be used.
5. Driveway locations to be determined on a setback plan.
6. Limit use to short access streets in exceptional circumstances. Preferred speed control device is median strip - see 4.1.18.
4.1.20
Acceptable Intersections Types

No Access Trunk Collector Streets

NOTES:
1. Queensland Streets 1998 Edition 2.11; Austroads Part 6 – Roundabouts; and QMR Road Planning and Design Manual - Ch14 Roundabouts set criteria for determining whether a roundabout is appropriate. For example when:
 •'T' results in delays to minor road traffic;
 •high proportions of right-turning traffic;
 •locations where high traffic growth is expected; and
 •intersections where it is desirable not to give priority.
2. 3-way 'T' with passing as Austroads Type B.
4.1.21 Acceptable Intersections Types

Access Trunk Collector Streets

NOTES:
1. Queensland Streets 1998 Edition 2.11; Austroads Part 6 – Roundabouts; and DMR Road Planning and Design Manual - Ch 14 Roundabouts set criteria for determining whether a roundabout is appropriate. For example when:
 • ‘T’ results in delays to minor road traffic;
 • high proportions of right-turning traffic;
 • locations where high traffic growth is expected; and
 • intersections where it is desirable not to give priority.
4.1.22
Acceptable Intersections
Types

Collector Streets

NOTES:
1. Queensland Streets 1998 Edition 2.11; Austroads Part 6 – Roundabouts; and DMR Road Planning and Design Manual - Ch14 Roundabouts set criteria for determining whether a roundabout is appropriate. For example when:
 - ‘T’ results in delays to minor road traffic;
 - high proportions of right-turning traffic;
 - locations where high traffic growth is expected; and
 - intersections where it is desirable not to give priority.
2. 6-10m kerb radius acceptable for collector streets.

A Place of Mobility and Connectivity
A Safe Place
4.1.23
Acceptable Intersections
Types – Access Street

NOTES:
1. Queensland Streets 1999 Edition 2.11; Austroads Part 6 – Roundabouts; and DMR Road Planning and Design Manual - Ch14 Roundabouts set criteria for determining whether a roundabout is appropriate. For example when:
 • ‘T’ results in delays to minor road traffic;
 • high proportions of right-turning traffic;
 • locations where high traffic growth is expected; and
 • intersections where it is desirable not to give priority.

2. Signed 4-way appropriate for access streets <300 vpd in exceptional circumstances for example:
 • allow long vistas;
 • grades prevent roundabout;
 • to improve legibility;
 • in areas of urban character where 4-ways are characteristic; and
 • safety can be achieved by stop signs; good sightlines; low traffic speeds and volumes etc.

3. 3-6m kerb radius acceptable for access streets.

4. Mini-roundabouts suitable for access streets where additional lot truncations are undesirable. Desirable minimum 3m diameter centre plus 1m concrete shoulder. Absolute minimum 2m diameter centre plus 1m concrete shoulder.

5. 3-way T and signed 4-way generally preferred intersection forms for access streets.
4.1.24
Acceptable Cul-de-sac Heads

NOTES:
1. Use of cul-de-sacs must not prevent a connected, walkable street network developing. Where cul-de-sacs are used for example where site dimensions and topography dictate - alternatives to R9 Turning Circle can be used to:
 - Reduce road reserve area and allow regular lot layout;
 - Enable cul-de-sacs on steep grades (to 12-16% rather than 3%);
 - Provide additional parking opportunities;
 - Facilitate landscape and bio-retention opportunities (if proven to be implementable); and
 - Provide open space areas within cul-de-sac heads incorporating seating or local gathering opportunities.

2. T, Y and Offset Square types to incorporate an 11.5m turning circle at the divergence point to accommodate turning circle of the 85 percentile vehicle (see AS 2890.1:2004).

3. T and Y-head design must allow for movements of larger service vehicles.
4.1.25 Alternative Services
Alignment in Verge

NOTES:
1. Location of footpath in vegetation may be varied between
 • central location;
 • adjoining property boundary; and
 • adjoining back of kerb.

2. Footpath adjoining property boundary is preferred to
 • increase planting area; and
 • improve opportunities for street trees to shade pedestrians and parked cars.
4.1.26 Linemarking

<table>
<thead>
<tr>
<th></th>
<th>Trunk Collector Streets</th>
<th>Collector Streets</th>
<th>Access Streets</th>
<th>Laneways</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separation Lines</td>
<td>✓</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Edge Lines</td>
<td></td>
<td>Parking / cycle lanes</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Outline Markings</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>Kerb markings</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Chevron / diagonal</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>splayed approaches</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to islands</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. To improve residential and visual amenity, the use of linemarking should be kept to the essential minimum and in accordance with the M.U.T.C.D.
4.2 PUBLIC REALM
4.2.1
STREETScape

4.2.1.1
Landscaped Island in Road Reserve

NOTES:
1. A local landscape feature containing retained and additional trees and low-maintenance planting. Can include hardscape elements such as walls if deemed safe.
2. Desirable minimum width 6m.
3. For species selection see 4.2.1.8 and 4.2.1.9. Turf not preferred.
5. Absolute minimum verge width 3m.
4.2.1.2
Landscaped Verge in Road
Reserve

NOTES:
1. Opportunities for informal seating and social space as well as feature planting.
2. Planting to road edge for safety.
3. Designated driveways to contain space.
4. For species selection see 4.2.1.8 and 4.2.1.9.
5. Absolute minimum verge width 3m.
4.2.1.3 Landscaped Node in Road Reserve

NOTES:
1. Passive space which provides enhanced local identity, pedestrian connectivity and community ownership opportunities.
2. Can be located in prominent viewlines and thresholds such as village entries or edge of conservation estates.
3. For species selection see 4.2.1.8 and 4.2.1.9.
4. Minimum width as continuation of road reserve or wider.
5. Minimum depth of node equivalent to one lot.
6. Design of dwellings should maximise habitable rooms overlooking node for casual surveillance and corner site presentation to two road frontages.
4.2.1.4
Street Tree Planting in Trunk Collector Streets

NOTES:
1. Tree planting at 4-8m spacing to median and verge – appropriate for street hierarchy and shade cover to footpaths.
2. Formal and informal street tree groupings to verge where width allows.
3. Low maintenance screen planting of shrubs and ground covers.
4. For species selection see 4.2.1.8 and 4.2.1.9.
5. Double-row planting may require additional verge width to allow for services.
6. Additional planting must take account of driveways and stormwater infrastructure.
4.2.1.5
Street Tree Planting in Collector Streets

NOTES:
1. Formal or informal planting of street trees including double-row planting to emphasise street hierarchy and provide continuous shade cover to footpaths.
2. Ground cover planting and embellishments to differentiate street.
3. For species selection see 4.2.1.8 and 4.2.1.9.
4. Double-row planting may require additional verge width to allow for services.
5. Additional Planting must take account of driveways and stormwater infrastructure.
4.2.1.6 Street Tree Planting in Access Streets

NOTES:
1. Informal layout of native street trees based on one tree per lot.
2. Additional tree planting for frontages >15m width and at corners.
3. Row and groups of trees in verge to park frontage.
4. Bollards in road verge to prevent vehicle access to park and car parking on verge.
5. Groundcover planting to street corners to define thresholds.
6. For species selection see 4.2.1.8 and 4.2.1.9.
7. Additional planting must take account of driveways and stormwater infrastructure.
8. Mainly to be used for key feature streets accessing centres and parks.
4.2.1.7
Planting in Medians, Verges and Islands

NOTES:
1. Desired to establish attractive leafy streets and neighbourhoods and to make medians more visible to motorists.

2. Min width of 2m between inverts for medians.

3. 200mm deep semi-mountable kerb to median to prevent plants overgrowing road pavement and reduce vehicle damage. Median kerb should widen to 450mm with concrete infill where median tapers or at nose of islands.

4. For species selection see 4.2.1.8 and 4.2.1.9.
4.2.1.8
Tree Planting Schedule for Road Reserves

Typical Planting Schedule for Road Reserves

<table>
<thead>
<tr>
<th>Trees</th>
<th>Lanes</th>
<th>Access Streets</th>
<th>Collector Streets</th>
<th>Trunk Collector</th>
<th>Landscape Features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Verge</td>
<td>Median</td>
<td>Verge</td>
<td>Median</td>
<td>Verge</td>
</tr>
<tr>
<td>Tuckeroo (Cupaniopsis anarcoides)</td>
<td>✓</td>
<td>*</td>
<td>✓</td>
<td>*</td>
<td>✓</td>
</tr>
<tr>
<td>Brushbox (Lophostemon Confertus)</td>
<td>✓</td>
<td>*</td>
<td>✓</td>
<td>*</td>
<td>✓</td>
</tr>
<tr>
<td>White Oak (Grevillea banksiana)</td>
<td>✓</td>
<td>*</td>
<td>✓</td>
<td>*</td>
<td>✓</td>
</tr>
<tr>
<td>Ivory-Curl Tree (Buckinghamia celisissima)</td>
<td>✓</td>
<td>*</td>
<td>✓</td>
<td>*</td>
<td>✓</td>
</tr>
<tr>
<td>Tulipwood (Harpulia pendula)</td>
<td>✓</td>
<td>*</td>
<td>✓</td>
<td>*</td>
<td>✓</td>
</tr>
<tr>
<td>Kauri Pine (Agathis robusta)</td>
<td>✓</td>
<td>*</td>
<td>✓</td>
<td>*</td>
<td>✓</td>
</tr>
<tr>
<td>Crows Ash (FJDerasia australis)</td>
<td>✓</td>
<td>*</td>
<td>✓</td>
<td>*</td>
<td>✓</td>
</tr>
<tr>
<td>Blue Quandong (Elagocarpus grandis)</td>
<td>✓</td>
<td>*</td>
<td>✓</td>
<td>*</td>
<td>✓</td>
</tr>
<tr>
<td>Fine leafed Paper Bark (Melaleuca leucadendron)</td>
<td>✓</td>
<td>*</td>
<td>✓</td>
<td>*</td>
<td>✓</td>
</tr>
<tr>
<td>Broad leafed Paper Bark (Melaleuca quinquenervia)</td>
<td>✓</td>
<td>*</td>
<td>✓</td>
<td>*</td>
<td>✓</td>
</tr>
<tr>
<td>Blue Gum (Eucalyptus tesselata)</td>
<td>✓</td>
<td>*</td>
<td>✓</td>
<td>*</td>
<td>✓</td>
</tr>
</tbody>
</table>

NOTES:
1. Planting on street corners to respect sight-line requirements.
2. 100L street trees preferred within trunk collector streets.
Typical Planting Schedule for Road Reserves

Shrub and Groundcover Planting Schedule

Notes:
1. Planting on street corners to respect sight-line requirements.

<table>
<thead>
<tr>
<th>Shrub and Groundcover</th>
<th>Lanes</th>
<th>Access Streets</th>
<th>Collector Streets</th>
<th>Trunk Collector Streets</th>
<th>Landscape Features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Verge</td>
<td>Median</td>
<td>Verge</td>
<td>Median</td>
<td>Verge</td>
</tr>
<tr>
<td>Lomandra longifolia (Mat Rush)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Dietes Bi-colour</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Dietes grandiflora (Wild Iris)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Myoporum parvifolium (Myoporum)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Agapanthus africanus (African lily)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Liriope "Muscana" (Evergreen Giant)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Liriope "Stripy White" (Stripy White)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Danella caerulea (Blue flax lily)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Grevillea "Bronze rambler"</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Themeda triandra (Kangaroo grass)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Pennisetum alopecuroides (Swamp Foxtail grass)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Anigozanthus flavidus (Kangaroo Paw)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Melaleuca "Thymifolia"</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Trachelospermum jasminoides (Star Jasmine)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Westringia fruticosa (Wynyabbie Gem)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Melaleuca Clarat Tops (Claret Tops)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Grevillea "Honey Gem" (Honey gem)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Metrosideros excelsa (New Zealand Christmas bush)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

A Green Place

A Unique Place
4.2.1.10 Tree Retention in Road Reserves

<table>
<thead>
<tr>
<th>Technical Criteria</th>
<th>Engineering Considerations</th>
<th>Exceptions</th>
<th>Maintenance Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trunk <200mm diameter</td>
<td>Road design and alignment can accommodate retained trees</td>
<td>Individual important trees – for example with habitat values or landmark qualities – that are outside the criteria may be retained following individual assessment including site inspection by the developer and ICC</td>
<td>On Maintenance (no requirements)</td>
</tr>
<tr>
<td><15m height</td>
<td>Boring or hand-dug trenches may be required within drip zone of significant vegetation to be retained</td>
<td></td>
<td>Off Maintenance Inspection (by appropriate qualified arborist)</td>
</tr>
<tr>
<td>Healthy, free from disease and insect attack</td>
<td>Footpath realignment if necessary</td>
<td></td>
<td>Off maintenance request by the developer with arborist’s report</td>
</tr>
<tr>
<td>Balanced branching structure</td>
<td>Public safety requirements</td>
<td></td>
<td>Formal acceptance of off maintenance by ICC</td>
</tr>
<tr>
<td>Trunk sufficient to hold canopy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not multi-trunked at base</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No injury from construction equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><100mm fill to base</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No root damage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species suitable for new microclimate and hydrology</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. Retaining trees has many benefits, including:
 - improved residential amenity;
 - shade;
 - neighbourhood character;
 - creation of attractive leafy streetscapes; and
 - biodiversity.
4.2.1.11
Street Furniture in Road Reserves

NOTES:
1. Formal or informal seating, and play opportunities in the street create opportunities for social interaction at a street-scale.

2. Seating can also be used to celebrate the many spectacular views around the development, forming local destinations.

3. Seating can aid walkability by providing rest stops on important pedestrian routes such as to neighbourhood centres.

4. Seating may also be appropriate near schools, key focal points, neighbourhood main streets.

5. Street furniture is also intended to be used as a character element for villages.

6. Street furniture should be durable and low maintenance.

7. Rubbish bins may be appropriate near bus shelters and neighbourhood main streets.
4.2.1.12 Entry Statements

NOTES:
1. Entry Statements aid legibility by defining village boundaries. Preferred for use in limited occasions near signature entry points.
2. Feature walls in medians and verges can have a stronger gateway effect than larger walls located in nearby lots.
3. Entry Statements typically blockwork walls with render or stone cladding.
4. Signage to be simple, low maintenance and designed to reduce vandalism opportunities.
5. Entry statements should be a mix of hard and soft landscape elements.
6. Design of walls (i.e. height and width) must ensure appropriate visibility for vehicles and pedestrians.
7. Where signage is proposed to be fixed to feature walls and structures within road reserve, separate approval is required.
4.2.1.13 Footpath Treatments

NOTES:
1. Alternative surface treatments providing a higher standard of hard landscape treatment, as a unique identifying feature to a village, or for better traction for pedestrians on steep footpaths.
2. For use only in key feature locations (e.g. neighbourhood main streets) and shared zones.
3. Care must be taken to avoid creating trip hazards due to texture changes.
4.2.1.14
Poles for Street Signs and Streetlights

NOTES:
1. Colours and pole designs to differentiate village addresses in keeping with streetscape elements.
2. Street sign poles and light poles limited to dark blue, heritage green and black.
4.2.2 PARKS

4.2.2.1 Tree Retention in Parks

<table>
<thead>
<tr>
<th>Technical Criteria</th>
<th>Exceptions</th>
<th>Maintenance Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retained Trees in Parks</td>
<td>No maximum trunk diameter</td>
<td>On Maintenance (no requirements)</td>
</tr>
<tr>
<td></td>
<td>No maximum height – location in park does not present safety concerns to nearby lots</td>
<td>Off Maintenance Inspection (by appropriate qualified arborist)</td>
</tr>
<tr>
<td></td>
<td>Healthy, free from disease and insect attack</td>
<td>Off maintenance request by developer with arborist’s report</td>
</tr>
<tr>
<td></td>
<td>Balanced branching structure</td>
<td>Formal acceptance of off maintenance by ICC</td>
</tr>
<tr>
<td></td>
<td>Trunk sufficient to hold canopy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not multi-trunked at base</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No injury from construction equipment</td>
<td></td>
</tr>
<tr>
<td></td>
<td><100mm fill to base</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No root damage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Species suitable for new microclimate and hydrology</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. Retaining trees has many benefits, including:
 - improved residential amenity;
 - shade;
 - neighbourhood character;
 - creation of attractive leafy streetscapes; and
 - biodiversity.
4.2.2.2 Integration of Water Sensitive Urban Design, Shade and Vehicle Access to Parks

NOTES:
1. Bio-retention basins and swales in natural drainage lines which may include parks.
2. The open space system and stormwater management may be integrated providing compliance is achieved with the principles outlined in the Springfield Open Space Master Plan. Where minor drainage infrastructure is proposed, it may form part of the open space system where it can be demonstrated that the land will continue to function as usable parkland which meets the desired standard of service for that parkland setting, or is offset by other usable parkland nearby. It should be noted however that open space credits only apply to areas whose primary function is recreation, not drainage.
3. Bio-retention areas designed as landscape feature and planted.
4. Kickabout area doubling as detention basin for major events.
5. Mounded garden bed to park perimeter to prevent vehicle access.
6. Stand-up kerb and bollards to prevent vehicle access to parks.
7. Lockable gate provides maintenance access.
8. Shade is essential in sub-tropical climate for comfortable park use. Shade to picnic areas from shelters and trees.
9. Retain and plant trees to provide a target of 50% shade cover for park in longer term.
4.3 LOT LAYOUT & HOUSING DENSITY
Springfield Lakes Transect

Description

Residential Density
<table>
<thead>
<tr>
<th>Type</th>
<th>0-1.5dwha</th>
<th>1.5-2.0dwha</th>
<th>2.0-3.0dwha</th>
<th>3.0-4.0dwha</th>
<th>4.0-5.0dwha</th>
<th>5.0-6.0dwha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical Lot Size</td>
<td>400 - 600m²</td>
<td>600 - 900m²</td>
<td>900 - 1200m²</td>
<td>1200 - 1500m²</td>
<td>1500 - 2000m²</td>
<td>2000+ m²</td>
</tr>
<tr>
<td>Public Transport</td>
<td>800m bus route / transit stop</td>
<td>1000m bus route / transit stop</td>
</tr>
<tr>
<td>Dwelling Types</td>
<td>Detached</td>
<td>Predominantly detached</td>
<td>Detached, attached & apartments</td>
<td>Detached, attached & apartments</td>
<td>Detached, attached & apartments</td>
<td>Detached, attached & apartments</td>
</tr>
<tr>
<td>Typical Building Setbacks</td>
<td>3.4m²; 1.5m²; 3.4m²</td>
<td>2.4-5.5m²; 1.5-6.5m²; 0.9-6.5m²</td>
<td>0-1.5m²; 0-1.5m²; 0.9-6.5m²</td>
<td>1.3m²; 0.5-1.5m²; 0.9-6.5m²</td>
<td>Site specific</td>
<td>None</td>
</tr>
<tr>
<td>Plot Ratio</td>
<td>0.2 - 0.6</td>
<td>0.75</td>
<td>2.0</td>
<td>1.6-2.0</td>
<td>3.0-4.0</td>
<td>0.2-0.6</td>
</tr>
<tr>
<td>Parking</td>
<td>Access points provided</td>
<td>Predominantly on-site</td>
<td>On-site & on-street</td>
<td>On-site & on-street</td>
<td>On-site & on-street</td>
<td>On-site & on-street</td>
</tr>
<tr>
<td>Road Types</td>
<td>Narrow slope-sensitive access streets within landform</td>
<td>Suburban streets and laneways</td>
<td>Wide boulevards with on-street parking</td>
<td>Suburban streets and laneways with higher parking capacity</td>
<td>Inner urban streetscape</td>
<td>Significant boulevards and urban streets</td>
</tr>
<tr>
<td>Built Form</td>
<td>All dwellings site specific</td>
<td>Developer-designed and project homes</td>
<td>Architect-designed product</td>
<td>Architect-designed product</td>
<td>Architect-designed product</td>
<td>Architect-designed product</td>
</tr>
<tr>
<td>Orientation</td>
<td>Determined by landform and local views</td>
<td>Balance slope and solar benefits, local views</td>
<td>Access, movement, define spaces, slope</td>
<td>Balance slope and solar benefits, local views</td>
<td>Access, movement, define spaces, slope</td>
<td>Urban form and significant vistas</td>
</tr>
</tbody>
</table>
4.4 DRAINAGE AND WATER SENSITIVE URBAN DESIGN
4.4.1 Swale In Verge

NOTES:
1. Swales slow runoff to creeks and begin stormwater treatment close to source.
2. Landscape feature within streetscape.
3. Preferred 1–4% longitudinal grades.
4. Suitable for access streets.
5. Q2 within swale and Q100 within road reserve.
6. Average verge widths shown.
7. Swale in verge preferred for park / reserve drainage.
8. For detailed design, reference should be made to WSUD Technical guidelines for SEQ produced by Moreton Bay Waterways and Catchments Partnership.
4.4.2 Swale In Median

NOTES:
1. Cross section shown for access street with on-street parking.
2. Also suitable for collector and trunk collector streets, where carriageway widths may vary.
3. For detailed design, reference should be made to WSUD Technical guidelines for SEQ produced by Moreton Bay Waterways and Catchments Partnership.
4. Width of swale determined by the size of catchment (likely 3-6m).
4.4.3
Flush & Slotted Kerbs

NOTES:
1. Allows runoff direct to swale or bio retention pod.
2. Prevents sediment accumulating on road.
3. Concrete or rock lined channel prevents grass overgrowing kerb and reduces maintenance problems around bollards.
4.5 BUILT FORM

Design Solutions relating to the design of buildings at Springfield Lakes.
4.5.1
Building on a Slope-Elevated Construction

NOTES:
1. Elevated construction is where floor structures are suspended off the ground by posts, poles or masonry block.

2. Elevated floor construction offers many advantages:
 - optimises views;
 - minimises expensive and unsightly earthworks and retaining wall treatments;
 - maximises tree and vegetation retention;
 - improved ventilation; and
 - improved opportunities for house orientation for prevailing breezes and solar access.
4.5.2
Building on a Slope-
Split Slab Construction

NOTES:
1. Split slab construction involves providing a step or multiple steps in the concrete floor slab. Split slab can also be used in combination with elevated portions of the home to achieve optimum design outcomes.

2. Split slab construction offers many advantages of:
 - reduces visible retaining walls; and
 - improves opportunities for tree retention.
4.5.3 Streetscape - Roof Styles

NOTES:

1. Varied roof styles can contribute greatly to the architectural character of a building, street and neighbourhood.

2. The following roof forms are suitable:
 - gable roof;
 - hip roof;
 - skillion roof;
 - flat roof (considered on merits); and
 - curved roof.

3. Eaves (minimum depth 450mm) are preferred to be incorporated into the design of buildings to provide adequate shading for exterior walls and windows from summer sun.
4.5.4 Streetscape—External Materials

NOTES:
1. Variety is a key in creating visually interesting streets and neighborhoods.
2. The following external building materials are considered appropriate:
 - rendered or bagged masonry;
 - light weight timber cladding suitably painted or stained (e.g. weather board, plywood); and
 - fibre cement with rendered and painted texture finish.
3. Other materials such as stone, face brick and colorbond metal sheeting will be encouraged for use in feature panels complementary to the style of the architecture.
4.5.5 Streetscape Entries & Driveways

NOTES:
1. Essential to maintaining a high quality residential address, homes must present well to the street and all public areas.

2. Enhanced street frontage can be achieved by:
 - a well defined sense of entry;
 - a highly visible front door;
 - the incorporation of front verandahs / balconies and porches; and
 - decorative front fences and entry gates.

3. Similarly, in designing and constructing your driveway the following should be considered:
 - selection of driveway materials to complement your building and colour palette;
 - the inclusion of feature paving or edge detail;
 - maximum widths and gradients;
 - the location of services within the street;
 - existing footpaths and crossover requirements; and
 - drainage and runoff issues, particularly when locating driveways on both side of streets, and when crossfall is used.

A Place of Mobility & Connectivity
A Responsive Place
4.8.6 Streetscape Rear - Loaded Dwellings

NOTES:
1. Rear Loaded dwellings (where car accommodation is to the rear of the lot) can offer many benefits, such as:
 - improved, garage free, streetscapes;
 - activity and surveillance to busier residential streets such as trunk collector streets;
 - increased off-street (rear) and on-street (front) parking;
 - greater housing diversity; and
 - fewer driveways to busier residential streets such as trunk collector streets.

2. A well defined pedestrian entry must be provided to the street (front).

3. At least one habitable room must be located on the street (front) side of the dwelling, for each storey if applicable.

4. An outdoor living room must be provided.

5. Min setback to lane (rear) 1m, for max 85% of boundary.

6. Driveway to lane (rear) max 5m wide.

7. A pedestrian access to the lane (rear) must be provided, separate from the garage.

8. Bin storage must be provided within the lot (rear).

9. Design should maximise habitable rooms overlooking lane (rear) for casual surveillance - from rear - loaded dwellings, and dwellings on intersecting streets. Habitable rooms over garages adjoining the lane are encouraged to increase casual surveillance.

10. Landscaping (including street trees) at intervals are encouraged to soften the built form of the lane.
4.8.7 Subtropical Design
Outdoor Living

NOTES:
1. The incorporation of some simple design elements will help homes to be naturally cooler in summer and warmer in winter, have greater access to natural light, be less expensive to run due to reductions in energy and water consumption; and be more comfortable and healthy places to live:
- the dwelling must provide an indoor / outdoor roofed room accessible from the main living area and at least 25m² or 12m² if a deck;
- where possible, living areas and outdoor spaces should be oriented to the north to natural exposure to sunlight;
- planning of internal areas so that the most used spaces have exposure to winter sun while being protected from the summer sun;
- allow for cross-flow ventilation that can cool the home in summer; and
- appropriate ventilation to the roof, ceilings, walls and floors to prevent heat gain in summer and heat loss in winter.
5.0 SOLUTION MATRIX
Springfield Lakes Design Manual

Neighbourhood Commercial Street (Dual Carriageway)
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community

Neighbourhood Commercial Street
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community

No-Access Trunk Collector Street with Bicycle Lanes (Dual Carriageway)
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community

No-Access Trunk Collector Street with Bicycle Lanes
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community

Access Trunk Collector Street (Dual Carriageway)
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community

Access Trunk Collector Street
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community

3-Lane Access Street
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community

Access Street / Access Place
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community

Split Access Street
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community

Parkfront Access Street
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community

Lane
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community

Parkfront Lane
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community

Rear Lane
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community

Single-sided Lane
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community

One way Crossfall Street
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community

Alternative Verge Profiles
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community

Driveway Link Speed Control Device
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community

Median Strip Speed Control Device
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community

Acceptable Intersection Types – No-Access Trunk Collector Streets
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community

Acceptable Intersection Types – Access Trunk Collector Streets
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community

Acceptable Intersection Types – Collector Streets
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community

Acceptable Intersection Types – Access Streets
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community

Acceptable Cul-de-Sac Heads
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community

Alternative Service Alignments in Verge
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community

Linemarking
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community

Landscaped Island in Road Reserve
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community

Landscaped Verge in Road Reserve
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community

Landscaped Node in Road Reserve
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community

Street Tree Planting in Trunk Collector Streets
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community

Street Tree Planting in Collector Streets
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community

Street Tree Planting in Access Streets
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community

Planting in Medians, Verges and Islands
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community

Tree Planting Schedule for Road Reserves
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community

Shrubs and Groundcover Planting Schedule for Road Reserves
- A Green Place
- A Unique Place
- A Safe Place
- An Integrated Place
- An Active Public Realm
- A Responsive Place
- A Place of Flexibility
- A Place of Mobility and Connectivity
- A Place of Partnerships
- A Place of Community
<table>
<thead>
<tr>
<th>A Green Place</th>
<th>A Unique Place</th>
<th>A Safe Place</th>
<th>An Integrated Place</th>
<th>An Active Public Realm</th>
<th>A Responsive Place</th>
<th>A Place of Choices and Flexibility</th>
<th>A Place of Mobility and Connectivity</th>
<th>A Place of Partnerships</th>
<th>A Place of Community</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree Retention In Road Reserves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Street Furniture in Road Reserves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entry Statements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Footpath Treatments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poles for Street Signs and Streetlights</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree Retention in Parks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integration of WSUD, Shade and Vehicle access to parks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swale in Verge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swale in Median</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flush and Slotted Kerbs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building on Slope – Elevated Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building on Slope – Split Slab Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streetscape – Roof Styles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streetscape – External Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streetscape – Entries & Driveways</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streetscape – Rear-Loaded Dwellings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtropical Design – Outdoor Living</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>